The Ubiquity of the Symplectic Hamiltonian Equations in Mechanics

نویسندگان

  • PAULA BALSEIRO
  • MANUEL DE LEÓN
  • JUAN C. MARRERO
چکیده

In this paper, we derive a “hamiltonian formalism” for a wide class of mechanical systems, including classical hamiltonian systems, nonholonomic systems, some classes of servomechanism... This construction strongly relies in the geometry characterizing the different systems. In particular, we obtain that the class of the so-called algebroids covers a great variety of mechanical systems. Finally, as the main result, a hamiltonian symplectic realization of systems defined on algebroids is obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects

In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...

متن کامل

Discrete Lagrangian and Hamiltonian Mechanics on Lie Groupoids

The purpose of this paper is to describe geometrically discrete Lagrangian and Hamiltonian Mechanics on Lie groupoids. From a variational principle we derive the discrete Euler-Lagrange equations and we introduce a symplectic 2-section, which is preserved by the Lagrange evolution operator. In terms of the discrete Legendre transformations we define the Hamiltonian evolution operator which is a...

متن کامل

Symplectic Integration of Hamiltonian Wave Equations

The numerical integration of a wide class of Hamiltonian partial diierential equations by standard symplectic schemes is discussed, with a consistent, Hamiltonian approach. We discretize the Hamiltonian and the Poisson structure separately, then form the the resulting ODE's. The stability, accuracy, and dispersion of diierent explicit splitting methods are analyzed, and we give the circumstance...

متن کامل

X iv : m at h - ph / 0 20 80 33 v 1 2 3 A ug 2 00 2 General Volume - Preserving Mechanical Systems

In this letter, we present the general form of equations that generate a volume-preserving flow on a symplectic manifold (M, ω). It is shown that every volume-preserving flow has some 2-forms acting the rôle of the Hamiltonian functions in the Hamiltonian mechanics and the ordinary Hamilton equations are included as a special case with a 2-form 1 n−1 H ω where H is the corresponding Hamiltonian...

متن کامل

Multi-Symplectic Runge-Kutta Collocation Methods for Hamiltonian Wave Equations

A number of conservative PDEs, like various wave equations, allow for a multi-symplectic formulation which can be viewed as a generalization of the symplectic structure of Hamiltonian ODEs. We show that Gauss-Legendre collocation in space and time leads to multi-symplectic integrators, i.e., to numerical methods that preserve a symplectic conservation law similar to the conservation of symplect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008